import torch from transformers import RobertaTokenizer, RobertaForSequenceClassification if torch.cuda.is_available(): print("USING CUDA") device = torch.device("cuda") elif torch.backends.mps.is_available(): print("USING Apple Metal") device = torch.device("mps") else: print("USING CPU") device = torch.device("cpu") model_path = "mshenoda/roberta-spam" tokenizer = RobertaTokenizer.from_pretrained(model_path) model = RobertaForSequenceClassification.from_pretrained(model_path, num_labels=2).to(device) def detect(text): inputs = tokenizer(text, return_tensors="pt", padding="max_length", truncation=True, max_length=512) inputs = {k: v.to(device) for k,v in inputs.items()} with torch.no_grad(): outputs = model(**inputs) return torch.argmax(outputs.logits, dim=1)